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ABSTRACT

Verification methods for high-resolution forecasts have been based either on

filtering or on objects created by thresholding the images. The filtering methods

do not easily permit the use of deformation while threshold-based objects are

subject to association errors. In this paper, we introduce a new approach in

which the observed and forecast fields are broken down into a mixture of Gaus-

sians and the parameters of the Gaussian Mixture Model fit are examined to

identify translation, rotation and scaling errors. We discuss the advantages of

this method in terms of the traditional filtering or object-based methods and

interpret resulting scores on a standard verification dataset.

1



1. Introduction

Intuitively, approximating a gridded field by a Gaussian Mixture Model (GMM) may be

thought of as the process of finding an optimal way to place Gaussian functions at various

points in the image such that the sum of these Gaussians mimics the input gridded field. As

shown in Figure 1, the larger the number of Gaussian components in the mixture model, the

more closely the image recreated using just the Gaussian components resembles the original

image.

Given the GMM that approximates two images (the forecast and observed), we show in

Section 3 that it is possible to analyze the parameters of the component Gaussians to infer

translation, rotation and scaling transformations.

a. Relationship to verification approaches

The new methods of verifying model forecasts that have been proposed can be catego-

rized into (a) filtering-based methods that operate on the neighborhood of pixels or on the

basis of decomposition and (b) displacement-methods that rely either on features or on field

deformation (Gilleland et al. 2009). Here, we propose a method of verification that does not

quite fall into any of these four categories.

Our proposed method incorporates level of detail, like the filtering methods, in that

the approximation can be made as exact as desired by increasing the number of Gaussian

components allowed in the mixture. The most exact representation would be a mixture of

Gaussians of zero variance and a component centered at every grid point. However, our

proposed method operates neither on the neighborhood of pixels nor on the basis of wavelet-
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like decompositions.

We propose analyzing the entire image (like field deformation), but only to find a para-

metric approximation to the image. Field deformation approaches such as those of Alexander

et al. (1999); Keil and Craig (2007) employ non-parametric optical flow approaches. In our

approach, the parameters of the approximation are compared between the forecast and ob-

served fields to obtain insight into the transformations (translation, rotation and scaling)

that would make the fields most like each other.

In the use of transformations, the method of this paper resembles the feature-based ap-

proaches of Davis et al. (2006) but without the dependence on thresholds (either in intensity

or in size) to categorize ”objects”. Therefore, our approach is not quite ”object-based”. It

could, however, be considered feature-based if one were to extend the definition of ”feature”

to include the Gaussian components that form the mixture.

b. Advantages of the GMM approach

There are several advantages to fitting an image with a GMM and using the fitted GMM

to carry out forecast verification:

1. There is no need to be concerned with splits or merges – if two contiguous regions are

better treated as a single region, then they will be approximated by a single Gaussian.

Conversely, a single, contiguous region may be broken up into multiple Gaussians if

needed for an optimal fit.

2. The Gaussian is a parametric function. Thus, the GMM affords a highly compressed

view of the information in the data that is especially useful for comparing two images
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for correspondence.

3. The number of Gaussians used is a good measure of the level of detail at which the

image is being represented. For the verification problem, by changing the number of

Gaussians allowed in the mixture model, one can control the scale at which compari-

sions are carried out.

4. Transformations of Gaussians correspond to easily identifiable changes in their pa-

rameters. Translation of objects corresponds to a change in the center point of the

Gaussian. Scaling (corresponding objects being smaller or larger in one of the fields)

can be inferred by changes in the variance of the Gaussian. Rotation of objects can be

inferred by changes in the ratio of the variance of the Gaussian in east-west and north-

south directions. Changes in the amplitude of the Gaussian correspond to changes in

intensity.

The natural incorporation of level of detail is an important characteristic of filtering-based

methods. The natural incorporation of transformation is a key advantage of object-based

verification methods, especially because the detection of transformation permits verification

methods to avoid the ”double penalty” (Gilleland et al. 2009) problem. Thus, a GMM pro-

vides the advantages of both of these methods in a simple, mathematically elegant framework

that is also quite easy to implement.

The method by which a GMM is fit to forecast and observed fields is described in Sec-

tion 2. We present the results of comparing the GMM on fake geometric and perturbed cases

drawn from Ahijevych et al. (2009) and Kain et al. (2008) and make suggestions for further

work in Section 3.
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2. Fitting a Gaussian Mixture Model

Fitting a GMM to an image for the purposes of forecast verification consists of the

following steps:

1. Initialize the GMM.

2. Carry out Expectation-Minimization (EM) algorithm to iteratively ”tune” the GMM.

3. Store the parameters of each Gaussian component of the GMM.

4. Compute translation, rotation and scaling errors from the GMM parameters corre-

sponding to the fits of the forecast and observed images.

The strategy followed for initializing the GMM will be much more clear if it is preceded

by a mathematical description of the GMM and of the E-M algorithm. Hence, we define

a GMM in Section 2a and explain the EM algorithm that is used to fit the image to the

GMM in Section 2b before delving into the initialization strategy in Section 2c and listing

the parameters to be stored in Section 2d. Error metrics are defined in Section 2e and these

are used to determine the corresponding Gaussians in Section 2f.

a. The Gaussian Mixture Model (GMM)

The GMM is defined as a weighted sum of K two-dimensional Gaussians:

G(x, y) =
K∑

k=1

πkfk(x, y) (1)

where the amplitudes πk are usually chosen so that they sum to 1. Each of the two-

dimensional Gaussians, fk(x, y) is defined given the parameters µxk
, µyk

and Σxyk
as (drop-
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ping the subscript k for convenience):

f(x, y) =
1

2π
√
|Σxy|

e−((x−µx)(y−µy))Σ−1
xy ((x−µx)(y−µy))T /2 (2)

µx, µy are the center of the Gaussian and Σxy the variance of the Gaussian i.e. Σxy is a

matrix whose components are:  σ2
x σxy

σxy σ2
y

 (3)

where σx is the standard deviation in the x direction and σxy the covariance of x and y.

|Σxy| is the determinant of the Σxy matrix. The scaling factor of the individual Gaussians

(1/(2π
√
|Σ|)) has been chosen so that the Gaussians sum to 1 over all x, y. If the πks are

chosen to sum to 1, then the GMM also sums to 1 over the entire image.

b. The Expectation-Minimization (EM) method

Given a set of points xi, yi, it is possible to fit these points to a GMM, G(x, y), by

following an iterative method known as the expectation-minimization (EM) method. The

proof that this hill-climbing method works is available in many texts (e.g: Hand et al. (2001)

pages 260-263), so we’ll limit ourselves to describing the actual technique as it applies to the

problem of fitting a GMM to the set of points.

Assume that an initial choice of parameters µxk
, µyk

, Σxyk
exists for each of the K com-

ponents. Because the scaling factors have been chosen to add up to one, the probability (or

likelihood) that the point xi, yi is covered by the GMM given the set of parameters is given

by:

P (xi, yi|θ) =
K∑

k=1

πkfk(xi, yi|µxk
, µyk

, Σxyk) (4)

6



where θ is used as short-hand for all the parameters of all the K components.

The first step, known as the expectation-step or E-step, is to compute the likelihood of

this given set of parameters. The probability that the pixel xi, yi arose from the kth Gaussian

component is given by:

P (k|xi, yi, θ) =
πkfk(xi, yi|µxk

, µyk
, Σxyk

)

P (xi, yi|θ)
(5)

The second step, known as the minimization-step or M-step, is to update the parameters

of all the K components based on the above likelihood calculations. To obtain the µx, µy, Σxy

of the kth component, the points xi, yi are weighted by Pk(xi, yi) before the appropriate

statistics are computed. For example,

µx = E(x) =

∑N
i=1(Pk(xi, yi)xi)∑N

i=1 Pk(xi, yi)
(6)

Similarly, µy is computed as E(y) and Σxy is computed as: E((x − µx)
2) E((x − µx)(y − µy))

E((x − µx)(y − µy)) E((y − µy)
2)

 (7)

Finally,the amplitude πk is computed as:

πk =
1

N

N∑
i=1

Pk(xi, yi) (8)

With the updated parameters, the E-step is carried out, a new set of likelihoods com-

puted, used to weight the points in the next M-step, and so on until convergence is reached.

The convergence is tested on the total likelihood of all the points at end of each M-step as

follows.

Recall that the probability that the point xi, yi is covered by the GMM given the set

of parameters is given by P (xi, yi|θ). From this, the probability that all the given points
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are covered by the GMM is given by the product of P (xi, yi; θ) over all the points. To

avoid numerical instability errors when multiplying so many small numbers, the log of this

likelihood is computed instead:

l(θ) =
N∑

i=1

log(P (xi, yi)) (9)

When the improvement in l(θ) falls below some tolerance, the iterative E-M process can

be stopped. We stopped the E-M process when the improvement fell below 1% and found

that convergence happens in 5 to 10 iterations.

c. Initialization of the GMM

Recall that the E-step requires a set of components, and the weights computed at the

end of the E-step are required to create a set of components in the M-step. Thus, the EM

process has to be bootstrapped with some initial guess at a GMM. Then, the EM process

will start at that point and slowly climb towards the local maximum in likelihood space.

This problem, of only promising a local maximum, is a shortcoming of the EM method, but

it is not a critical problem in the case of weather images because we can initialize the GMM

near a ”good enough” solution.

In the case of weather images, we do know that contiguous pixels ”should” belong to

the same Gaussian. We can take advantage of this spatial coherence to place the initial

mixture components. The pixels in the image with valid data values are grouped into regions

consisting of contiguous pixels. These pixels are then arranged so that all the pixels in a

region are listed together. It should be noted that, for each region, the pixels are listed in

random order so that, for example, not all the pixels in the same row are listed consecutively
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– this is important to avoid biasing the E-M algorithm towards horizontally-aligned clusters.

The carefully arranged list of pixels is broken into K equal parts where K is the desired

number of Gaussian components. Each pixel gets a weight of one for ”its” Gaussian compo-

nent and zero for all other components i.e. if a pixel falls into the kth group, the weight is

one for the kth component and zero for all other components.

Thus, the initial condition consists of a number of Gaussian fits so that separate regions

get fit to a Gaussian. Relatively large regions will be fit in parts to Gaussians. From

this initial point, the hill climbing approach of the EM method finds the best possible fit.

However, because the EM method is only a local optimization method, there may be a better

solution elsewhere but it may not be reached.

d. Parameters of the GMM

The GMM is completely specified by the following parameters: π, µx, µy, σx, σy and σxy

for each of the K Gaussian components of the GMM. Recall, however, the GMM was defined

so as to sum to 1, and that the EM method optimized the likelihood of the parameters given

the positions of the pixels (and not the intensity). Thus, two minor changes have to be made

to the GMM procedure explained above:

1. The total intensity associated with all the pixels in the image is stored and this value

is used to scale the GMM so that the image intensities can be recreated.

2. Because the EM method does not cater to the intensity, the more intensive locations are

repeated several times. This is done by creating a cumulative frequency distribution

(CDF) of the pixel values in the image and using a pixel’s location m times where m
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is given by:

m = 1 + round(
CDF (Ixy)

freq(Imode)
)∀Ixy < Imode (10)

where Imode is the intensity corresponding to the most frequent quantization interval in

the histogram of intensities used to compute the CDF. Pixel locations with intensities

lower than Imode are used only once.

e. Error Measures

Given two Gaussian components, one from the forecast field and one from the observed

field, it is possible to compute translation, rotation and scaling errors from the parameters

of the two components.

The translation error, etr, is the Euclidean distance between their means:

etr =
√

(µxf − µxo)2 + (µyf − µyo)2 (11)

where the subscripts f and o correspond to the forecast and observed fields respectively.

The rotation error, erot, can be computed from the two covariance matrices since the first

eigen vector of a covariance matrix represents the direction of maximum variance (this is the

key idea underlying Principal Components Analysis, for example). Once the eigen vectors

of the two covariance matrices are computed, the dot product of the eigen vectors yields the

cosine of the angle between them. Hence, the rotation error (in degrees) can be computed

as:

erot =
180

π
cos−1(vf .vo) (12)

where vf and vo are the maximum-variance eigen vectors of the covariance matrices (Σ) of
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the forecast and observed fields. As pointed out by Davis et al. (2006), however, one should

be careful about using rotation error on objects that are circular. In the case of a GMM,

the confidence associated with erot is low if σx and σy are nearly equal.

The scaling error, esc can be computed as:

esc =
πkf

πko

(13)

so that if esc is less than one, it’s an underforecast and if it is greater than one, it’s an

overforecast.

f. Finding Corresponding Gaussians

All the error measures in the previous section are defined assuming that one Gaussian

component from each field (forecast and observed) is given. In fact, there will be K Gaussian

components available from each field. Therefore, these error measures are computed for each

pair of Gaussian components (K2 pairs in all) and the best match for each forecast component

is selected by normalizing and weighting the three individual errors to compute an overall

error. We chose the scaling factors and weights arbitrarily:

e = 0.3 ∗ min(
etr

100
, 1) + 0.2 ∗ min(erot, 180 − erot)/90 + 0.5 ∗ (max(esc, 1/esc) − 1) (14)

In practice, they would be chosen based on the resolution of the images and the needs of

the users of the forecast. For example, underforecasts and overforecasts may have different

costs, as could translation errors beyond a certain threshold.

The overall forecast error can be computed by computing the mean of the individual

GMM component errors. Alternately, because the Gaussians are localized, the errors could
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be used as indicative of the errors in different regions of the forecast field.

g. Number of Components

The initialization procedure assumed that we needed a GMM consisting of K components.

How do we know the number of components needed in the GMM?

The traditional way to estimate K is to start with 1 model and slowly increase the number

of models. At each K, the log-likelihood obtained from the GMM fit is used to compute an

information criterion such as the Bayes Information Criterion (BIC) (Hand et al. 2001):

BIC = 2l(θ) − 6Klog(N) (15)

The optimal value of K is the K at which the information criterion is maximum. In effect, the

fitting is stopped when the number of parameters to represent the model (µx,µy, σx,σy,σxy,π

for each of the K Gaussian components) starts to overwhelm the advantage gained by the

increased likelihood.

We found though, the maximum number of components given by this criterion is too

many for the forecast verification problem. For example, for the image shown in Figure 1, the

number of components required before the BIC stops increasing is on the order of hundreds.

Thus, we subjectively chose the maximum number of components to be 3 for all the cases

considered.
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3. Results, Analysis and Conclusions

We computed the GMM on three datasets from the intercomparison project (Gilleland

et al. 2009; Ahijevych et al. 2009). The results are presented below.

a. Geometric

This dataset consists of a synthetic object that is subjected to geometric transformations.

It is clear from a cursory examination of the data (See Figure 2) that the optimal number of

Gaussian components ought to be one. However, we carried out the GMM fitting assuming

3 components so as to demonstrate that it is not critical to get the number of Gaussian

components correct.

By referring to Table 1, it may be observed that translation to the right, whether by 50

points as in geom001 or by 125 points as in geom005, is easily inferred by the change in µy

(the longitude direction in our right-handed coordinate system centered at the top-left corner

of the image) of the appropriate number of pixels. Translation to the north or south can

similarly be inferred from changes in µx. Differences in size can be inferred quantitatively

as changes in σy or in the amplitude,πk, as in geom004. Both numbers (
√

2110/128 and

167034/49734) indicate that the region in geom003 is about three times too big. The wrong

orientation in geom004 can be inferred from the changes in σx and σy. The new object

is 4 times too small in the north-south direction and 4 times too large in the east-west

direction. The translation by 125 pixels can be inferred by the change in µy. Quantitatively,

the rotation is captured by the erot of 90 degrees. When the objects become circular (as in

geom003 and geom005), the rotation metric is unreliable but this is to be expected because
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the ”orientation” of a circular object is undefined. Thus the GMM is able to capture the

transformations on this synthetic dataset.

If we were to rank the different synthetic forecasts by the admittedly subjective weighted

error metric of Equation 14, the order is: geom001, geom002, geom004, geom003 and finally

geom005. This is intuitively what one would expect.

b. Perturbed

The ”perturbed” set of cases from the Intercomparison Project (Ahijevych et al. 2009)

consists of observed data from the 2005 NSSL/SPC Spring Experiment described in Kain

et al. (2008). The observed data were subjected to various transformations as shown in

Figure 3. We carried out the fit with 3 Gaussian components, as in the case of the synthetic

cases, primarily to keep the analysis tractable. We used only the top 10% of pixel values

in each of the images to form the GMM fit so as to avoid contanimation by the extremely

large number of low intensity pixels in this real-world image. This adaptive threshold was

6.6 mm on the original image and higher, due to movement of pixels beyond the edge of the

domain, for the perturbed images.

Here too, the GMM is able to capture the translations as shown in Table 2 for cases

1-3. Within the limits of round-off error, the differences in µx and µy match up well with

the known translation errors (See also the first two columns in Figure 3). In cases 4 and

5, the translations are larger. While the GMM fits and etr point to the magnitude of the

translation error, the numerical estimates are inexact because many of the pixels that were

in the original fit are now off the edges of the image.
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Case 6 involves both translation and an overestimate of precipitation amounts – each

pixel’s value is multiplied by 1.5. This overestimate is captured in the amplitude (πk) of the

Gaussian and in the scaling errors (escs). Moreover, the translation effect is independent

of the amplitude effect as can be noticed by comparing the µx and µy here with those of

fake003.

Finally, fake007 involves both translation and a consistent underestimate of precipita-

tion. This is reported by the GMM as a reduction in the amplitude and in the size (σy is

smaller and σx larger but the net change is towards a smaller size). Note, for comparison,

that fake006 showed an amplitude increase but no increase in size. Thus the GMM is able

to parsimoniously capture all the transformations on the perturbed dataset. The under-

forecast is captured in esc but because the esc was defined as a ratio, the reported error

(0.67, for example) does not match up with the actual transformation which was a constant

underforecast of 2mm.

Ranking the different perturbed forecasts by the error metric of Equation 14 yields this

order: fake001 (0.02), fake002 (0.04), fake003 (0.23), fake006 (0.31), fake004 (0.33), fake007

(0.42) and finally fake005 (0.44). Ordering forecasts in this manner is subjective as the order

would change depending on the weights assigned to the translation, rotation and scaling

errors and to the maximum tolerable errors in each category.

c. June 1, 2005

The third set of cases we analyzed consists of observed data and model runs from the

2005 NSSL/SPC Spring Experiment described in Kain et al. (2008). The observed data from
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June 1, 2005 are compared with 24 hour forecasts carried out on May 31, 2005. The GMM

fits of the data and the model forecasts (from the 2CAPS, 4NCAR and 4NCEP models)

are shown in Figure 4. As with the ”fake” cases in the previous section, we carried out the

fits with 3 Gaussian components for tractability and limited the fit to the top 10% of pixel

values in each of the images.

The June 1 case consists of three quite different systems: an elongated band stretching

north-south along the Great Plains, somewhat weaker precipitation in the Southeast and

weak, isolated storms in the Northwest. The 3-member GMM fit does not capture these

three events. Instead, two of the members correspond to the northern and southern sections

of the elongated band and the south-eastern band. The weak, isolated cells in the Northwest

are ignored in the GMM fit. As pointed out by Wernli et al. (2009), it would be advantageous

to carry out this analysis on smaller domains where only one type of of meteorological system

predominates. It should also be noted, from Figure 1, that higher order GMM fits do capture

all these systems. We chose to use only a 3rd order fit so as to keep the analysis of member

parameters tractable.

The GMM coefficients are shown in Table 3. The GMM coefficients of the 2CAPS forecast

(which is the same as the fake000 field in Table 2) are repeated for convenience.

The easy correspondence of GMM parameters that existed in the geometric and perturbed

cases does not exist in the real model forecasts. Nevertheless, interesting conclusions can be

drawn from the transformations indicated by the changes in the GMM parameters. We’ll

consider the Gaussian components one-by-one.

For the first Gaussian component (corresponding to the Northern Great Plains), all three

forecasts are displaced to the north and west. The 2CAPS forecast is the least displaced –
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its µx and µy are closest to that of the observation and etr is lowest. The 4NCAR model run

underestimates the precipitation; the 2CAPS model run overestimates it while the 4NCEP

gets the intensity of precipitation nearly correct (πk of 23002 vs. 22136 or a esc of 1.04).

Examining the elements of the Σxy matrix, the 2CAPS forecast gets the shape wrong whereas

the 4NCAR and 4NCEP forecasts get the extent correct in the north-south direction (the x

direction in our right-handed coordinate system centered at the top-left of the image) but

over-estimate the east-west extent.

For the second Gaussian component (corresponding to the Southern Great Plains into

Texas), all three forecasts are displaced to the north, with the 2CAPS forecast again exhibit-

ing the least displacement. The forecasts are extremely vertical (ratio of σx to σy) whereas

the observation indicates that the field should be more horizontal. The wrong orientation

is captured in erot. In terms of intensity (πk or esc), the 2CAPS is the closest whereas the

4NCAR and 4NCEP forecasts are significant overestimates.

On the third Gaussian component (covering the Southeastern United States), the NCAR

and NCEP model forecasts get the intensity and orientation correct but are displaced to

the east. The 4NCEP also exhibits a displacement to the north. In addition, the 4NCEP’s

forecast is overly large in the north-south direction indicating the precipitation, even if

correct in the aggregate, is spread over too large an area.

Overall, the rank of the models in terms of Equation 14 is CAPS (0.34), NCAR (0.49)

and finally NCEP (0.50). At the extremely coarse scale at which the forecasts have been

compared, the 2CAPS forecast exhibits the least translation, orientation and scaling errors. If

we were to increase the number of Gaussians, it would be possible to perform the comparison

at more finer detail.

17



d. Areas for further exploration

This paper presents a GMM approach to model verification, but is not a full-fledged

verification technique. There are some unresolved questions about the GMM approach that

need to be addressed in order to create a verification technique from the ideas in this paper:

1. Number of components The ideal number of components is very dependent on the im-

age itself. It is possible to use criteria like the Bayes Information Criterion to obtain

the ”optimal” number of components required to approximate the image. These, how-

ever, will correspond to the most detailed representation of the image with a GMM

whereas, in our experience, much fewer components (more than three however) are re-

quired for forecast verification. An information criterion more amenable to the forecast

verification problem needs to be developed.

2. Association or Deformation? In this paper, we approximated the observed and the

forecast field by separate GMMs and picked out the correspondence of the parameters

in the two GMMs by looking for the match with the lowest overall error. This was

quite easy to do because we chose a manageable number of components. With many

more components, such matching may not be so unique. An alternative approach that

would side-step the entire association problem would be to be start the E-M on the

forecast field with the GMM that corresponds to the observed field and observe how

the GMM components get deformed. It is not known which approach is better.

3. Initialization of EM The EM approach only promises convergence to a local minimum,

not a global minimum. We introduced a bias towards the ”known” form of the so-

18



lution by organizing pixels into contiguous regions before computing the first E-step.

Exploration into other algorithms for initializing the EM process may prove beneficial.

4. Low intensity regions Because our GMM formulation was based on likelihood, we em-

phasized higher intensities by repeating the pixels at which higher intensities were

present. This would have the unfortunate side effect of deemphasizing low intensity

and small cells if there is a large, high intensity cell somewhere else.

5. Error measures Other error measures are possible beyond the three – translation, ro-

tation and scaling – that were defined and employed in this paper. For example, an

error metric based on size could be defined as:

esize =
σxf ∗ σyf − σxo ∗ σyo

σxo ∗ σyo

(16)

One possible solution to the problem of low intensity regions might be to break up large

spatial areas into smaller areas and then fit GMMs to them. The approach might to be fit

a GMM to the entire image, then to break the image into quartiles and fit a GMM to each

quartile. This process could be repeated as often as needed to create a hierarchical set of

GMMs, each of which could be analyzed to obtain the forecast efficiency at the appropriate

level of detail and over the appropriate spatial area. The drawback to this would be that

the GMM representations would not be tied to storm morphology.

Another possible solution to the problem of low intensity, small regions being ignored

in favor of higher intensity, large regions is to fit a separate GMM to each set of contigu-

ous pixels. This is shown in Figure 1g. The drawback to this would be that the natural

capability of the GMM approach to handle splits and merges and to form a highly efficient

representation of the image would be lost.
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e. Summary

In this paper, we introduced the novel approach of using a Gaussian Mixture Model

to verify model forecasts. We showed that the GMM approach is able to easily identify

translation, rotation and scaling errors in forecasts. We also identified areas where this

approach can be improved in order to create a robust verification method.
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a b c

d e f

Fig. 1. Fitting a Gaussian Mixture Model to an image (a) Image being fitted: 2CAPS 24-

hour forecast of precipitation on May 31, 2005 from Kain et al. (2008). (b) Image recreated

from a GMM with 5 component Gaussians. (c) With 10 Gaussians (d) With 20 Gaussians

(e) With 50 Gaussians (f) Fitting each contiguous region separately
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geom000 geom003 geom004

Fig. 2. Top row: Synthetic images from Ahijevych et al. (2009). Second row: GMM with

3 components.
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fake000 fake003 fake007

Fig. 3. Top row: Perturbed images from Ahijevych et al. (2009). Second row: GMM with

3 components.
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Observed 4NCAR 4NCEP

Fig. 4. Top row: Observations on June 1, 2005 and 24-hour model forecasts on May 31, 2005.

The 2CAPS forecast field is shown in Figure 3a. Second row: GMM with 3 components.
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Table 1. GMM fits on synthetic images from Ahijevych et al. (2009) and the associated

errors. The numbers in bold are referenced in the text.

Data set Description µx µy σ2
x σxy σ2

y πk etr erot esc e

geom000 Original 249 203 1720 4 128 49734

249 203 1667 4 127 49734

250 203 1668 9 127 49737

geom001 50 pts. right 249 253 1694 0 129 49731 50 0 1 0.15

250 254 1682 4 121 49741 51 0 1 0.15

250 253 1679 4 131 49732 50 0 1 0.15

geom002 200 pts. right 249 404 1612 4 126 49739 201 0 1 0.3

250 403 1682 4 127 49735 200 0 1 0.3

250 403 1760 0 129 49731 200 0 1 0.3

geom003 125 pts. right, 250 339 1696 9 2110 167034 136 91 3.36 1.68

too big 249 340 1696 13 2048 167018 137 92 3.36 1.67

250 341 1647 4 2021 167032 138 91 3.36 1.68

geom004 125 pts. right 249 341 104 1 2046 49736 138 90 1 0.5

wrong orientation 249 340 101 1 2027 49729 137 90 1 0.5

250 339 105 2 2120 49740 136 90 1 0.5

geom005 125 pts. right, 249 355 1678 17 8271 323126 152 90 6.5 3.25

huge 250 356 1688 34 8203 323125 153 90 6.5 3.25

250 356 1668 16 8265 323121 153 90 6.5 3.25
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Table 2. GMM fits on perturbed images from Ahijevych et al. (2009) and the errors

associated with the forecasts. The numbers in bold are referenced in the text.

Data set Description µx µy σ2
x σxy σ2

y πk etr erot esc e

fake000 Original 176 289 1305 743 1328 26437

309 252 1272 482 665 26437

379 407 1456 3919 20490 26437

fake001 3 pts. right 181 292 1306 743 1328 26437 6 0 1 0.02

5 pts. down 314 255 1270 490 675 26437 6 0 1 0.02

384 410 1456 3918 20424 26437 6 0 1 0.02

fake002 6 pts. right 186 295 1307 744 1329 26437 12 0 1 0.04

10 pts. down 319 258 1269 496 675 26437 12 0 1 0.04

389 414 1472 3928 20348 26437 12 0 1 0.04

fake003 12 pts. right 195 299 1206 840 1133 27101 21 178 1.03 0.08

20 pts. down 340 261 774 578 767 34201 32 16 1.29 0.28

416 495 1051 1900 10252 17843 95 0 0.67 0.53

fake004 24 pts. right 212 311 1059 813 1111 26527 42 0 1 0.13

40 pts. down 354 276 1239 802 837 33773 51 9 1.28 0.31

432 483 1347 3110 13743 17566 93 2 0.66 0.54

contd...
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fake005 48 pts. right 250 335 968 801 1121 25113 87 2 0.95 0.29

80 pts. down 387 304 1772 1052 934 33256 94 5 1.26 0.42

452 447 1405 4659 20003 15666 83 2 0.59 0.6

fake006 12 pts. right 192 298 1096 859 1198 33338 18 1 1.26 0.19

20 pts. down 335 263 1178 773 829 42294 28 10 1.6 0.41

times 1.5 412 483 1264 2538 12634 22304 83 1 0.84 0.34

fake007 12pts. right 222 306 2355 194 459 17815 49 140 0.67 0.48

20 pts. down 345 258 79 162 486 20620 36 138 0.78 0.34

minus 2 mm 409 431 755 2884 20770 15932 38 3 0.6 0.45
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Table 3. GMM fits on observed and model forecasts from Kain et al. (2008) and the errors

associated with the model forecasts.

Description µx µy σ2
x σxy σ2

y πk etr erot esc e

Observed 193 301 3546 841 936 22136

350 264 684 1218 7508 22616

383 309 921 2032 22181 20061

2CAPS forecast 176 289 1305 743 1328 26437 21 151 1.19 0.22

309 252 1272 482 665 26437 43 129 1.17 0.33

379 407 1456 3919 20490 26437 98 6 1.32 0.47

4NCAR forecast 159 260 3134 2344 7636 16464 53 129 0.74 0.44

277 264 3369 1607 932 39139 73 126 1.73 0.7

379 461 1729 2840 14879 21068 152 6 1.05 0.34

4NCEP forecast 168 247 3518 747 6888 23002 60 118 1.04 0.34

278 258 3153 906 484 43675 72 117 1.93 0.82

405 416 3920 6740 24879 20010 109 11 1 0.33
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